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Gouy shift and temporal reshaping of focused
single-cycle electromagnetic pulses
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We discuss exact solutions of Maxwell’s equations that describe the evolution of single-cycle electromagnetic
pulses. The solutions are applied to recent observations of the diffraction transformation of terahertz pulses.
In particular, we elucidate the role of the Gouy shift in the temporal reshaping and polarity reversals of single-
cycle terahertz pulses.  1998 Optical Society of America
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Advances in ultrafast optical technology have made
possible the generation of single-cycle and half-cycle
electromagnetic pulses of subpicosecond temporal
duration.1 These pulses have center frequencies in
the terahertz range and spectra that extend from
zero to several terahertz. This extraordinarily large
bandwidth results in signif icant temporal reshap-
ing of focused terahertz pulses even when they
propagate through free space or pass through aper-
tures.2,3 Analysis of this diffraction-induced pulse
shaping is usually carried out through numerical
solution of Maxwell’s equations.3 On another front
there is much interest in exact solutions of Maxwell’s
equations that describe the localized transmission
of electromagnetic energy.4 – 6 One particularly in-
teresting class of solutions termed electromagnetic
directed-energy pulse trains by Ziolkowski5,6 has
finite total energy and could prove useful in de-
scribing ultrashort-pulse phenomena in regimes
beyond the slowly varying envelope and the paraxial
approximations.

In this Letter we show that a certain subset of Zi-
olkowski’s electromagnetic directed-energy solutions of
Maxwell’s equations can describe most of the observed
features of focused single-cycle electromagnetic pulses.
These exact solutions demonstrate how the Guoy phase
shift of focused beams leads to temporal reshaping
and polarity reversals as terahertz pulses propagate
through free space.

The modif ied power spectrum pulse discovered by
Ziolkowski5,6 is an exact solution of the free-space wave
equation: √

=2 2
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!
f sr, td ­ 0 . (1)

In terms of the variables r2 ­ x2 1 y2, t ­ z 2 ct,
s ­ z 1 ct, and s ­ r2ysq1 1 itd 2 is, the modified
power spectrum solution is given by

f sr, td ­ f0ysq1 1 itd ss 1 q2d (2)
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for a pulse propagating along the z direction. Here
q1 and q2 are parameters with dimensions of length
that can be shown to determine the peak wavelength
and the Rayleigh range of the pulses, respectively.
For the typical terahertz pulse q1 is a few orders of
magnitude smaller than q2. Vector f ield solutions of
Maxwell’s equations are then readily obtained by use
of the method of Hertz potentials.6 In this Letter
we construct a Hertz vector that is transverse to the
direction of propagation P ­ x̂f sr, td, where x̂ is a
unit vector. The electric and the magnetic fields are
then found from E ­ 2m0, 3 ≠Py≠t and H ­ , 3

, 3 P, respectively. In Ref. 7, the use of a z-directed
Hertz potential was reported to result in toroidal wave
packets, termed focused doughnuts. We find here that
the transversely oriented Hertz potential results in
oblate wave packets that resemble focused pancakes.

For the case in which q1 ,, q2 (which means that the
effective wavelength of the pulse is much shorter than
the Rayleigh range), it can be shown that the dominant
field components are

Ey sr, td ­ 2f0

r
m0

e0

sq1 1 itd2 2 sq2 2 isd2

f r2 1 sq1 1 itd sq2 2 isdg3
, (3)

Hxsr, td ­ 2f0
2r2 coss2wd 1 sq1 1 itd2 1 sq2 2 isd2

f r2 1 sq1 1 itd sq2 2 isdg3
,

(4)

where w ­ tan21s yyxd. The Ex component is exactly
zero owing to the x orientation of the Hertz vector.
The other components are such that EzyEy and HzyHx

are of the order of Os
p

q1yq2 d, whereas HyyHx is of the
order of Osq1yq2d.

Equations (3) and (4) are exact, finite-energy
solutions of Maxwell’s equations that describe the
spatiotemporal evolution of focused single-cycle elec-
tromagnetic pulses with diffraction effects included.
Owing to the linearity of Maxwell’s equations, the real
and the imaginary parts of Eqs. (3) and (4) separately
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constitute valid pulse solutions. Furthermore, since
the complex f ield is an analytic signal, the real sEr

y d
and imaginary sEi

yd parts are related by a Hilbert
transform at any given position r.

To visualize these pulses and relate them to
terahertz experiments, we set the parameters
q1 ­ 0.025 mm and q2 ­ 1000 mm and plot in
Fig. 1 the on-axis s r ­ 0d temporal shapes of Er

y and
Ei

y in the z ­ 0 plane (the focal plane). In this plane
one of the solutions is symmetric, and the other is an-
tisymmetric. These pulse shapes are similar to those
observed in terahertz experiments.8,9 The symmetric
pulse is often referred to as unipolar.2 We also point
out that since these exact solutions are nonseparable
the pulse shape and width at the focus will depend
on radial position r. This dependence is also shown
in Fig. 1. The radial extent of the pulse is given
roughly by

p
q1q2 since, as can be seen from Eq. (3),

when r ­
p

q1q2 the electric f ield is 1y8 of its value
on axis. The temporal pulse width is also roughly
tp ø 2

p
3 q1yc, which, for q1 ­ 0.025 mm, is ,289 fs.

The spatiotemporal evolution of the imaginary pulse
Ei

y sr, td from a distant plane sz ­ 23 md before the
focus, through the focus, and then to a plane in the
far field sz ­ 3 md is shown in Fig. 2. The variable
z 2 ct represents the local distance measured from
the pulse center. One can clearly observe the curved
phase fronts of the pulse as it converges to a minimum
spot size at the focus and then diverges again. More
significantly, polarity reversal and substantial tem-
poral reshaping can be observed as the pulse evolves
through the focus. The real solution Er

y sr, td also un-
dergoes a similar transformation that is due simply
to the well-known Gouy shift of focused beams.10 In
fact, experiments with one-cycle pulses should provide
a simple and direct way to observe the Gouy effect.

The diffraction-induced transformation of pulse
shapes can be seen more clearly in Fig. 3, in which
the on-axis s r ­ 0d temporal profiles at several propa-
gation distances are plotted. It can be seen that the
symmetric real solution at z ­ 0 evolves in the far
field into an inverted version of the antisymmetric
imaginary solution at z ­ 0. Simultaneously, the
antisymmetric imaginary solution at z ­ 0 evolves in
the far field into the symmetric real solution. These
transformations can also be understood in terms of
the Gouy phase shift. For short pulses, such that
ctp ,, q2, the f irst term in the numerator of Eq. (3)
can be neglected to yield the real and the imaginary
parts of the on-axis field:

Er
y s r ­ 0, z, T d ­

AsT d
sq2

2 1 4z2d1/2 cosfasT d 1 fszdg ,

Ei
y s r ­ 0, z, T d ­

AsT d
sq2

2 1 4z2d1/2
sinfasT d 1 fszdg ,

(5)

where AsT d ­ 22f0m0cyfq1
3sT 2 1 1d3/2g, asTd ­ 3 3

1021sT d, fszd ­ tan21s2zyq2d is the Gouy phase shift,
and T ­ 2tyq1 is a normalized local time. Equa-
tions (5) show that the evolution of the temporal pro-
files during propagation is completely determined by
the Guoy phase shift fszd, since the functional forms
of AsT d and asT d are invariant on propagation. The
scale factor sq2

2 1 4z2d21/2 simply accounts for en-
ergy conservation. In propagating from the focus to
the far f ield fszd goes from zero to py2, thus ef-
fecting the transformations Er

y ! 2Ei
y and Ei

y ! Er
y .

Fig. 1. Temporal profiles Er
y s0, r, td (left) and Ei

ys0, r, td
(right) at r ­ 0 (solid curves), r ­ we (dashed curves), and
r ­ 2we (dotted–dashed curves) at the focal plane sz ­ 0d.
Here we ­ sq1q2y2d1/2 is an effective beam radius at the
focus. The pulse width increases off axis. Here and in
Figs. 2–4 q1 ­ 0.025 mm and q2 ­ 1000 mm.

Fig. 2. Spatiotemporal evolution of the imaginary solu-
tion Ei

y sr, td from z ­ 23 m before the focus (left), through
the focus (center), and then to the far f ield z ­ 3 m (right).
Note the polarity reversal and temporal reshaping.

Fig. 3. Spatial evolution of the pulse shape on the axis
s r ­ 0d at f ive propagation distances Z. Clearly, the real
and the imaginary pulses evolve into each other during
propagation.
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Fig. 4. Amplitude spectra at z ­ 0 for various radial
positions. Note the red shift as one moves from the center
of the pulse to the edge. The effective beam radius is
we ­ 3.5 mm. The spectra are normalized by the peak
value at r ­ 0.

Similarly, in passing from 2` to 1` through the
focus, the field acquires a fszd ­ p phase shift that
causes the inversions Er

y ! 2Er
y and Ei

y ! 2Ei
y . The

transformations described above are also obtainable
from the Hilbert transform relationship between the
real and the imaginary parts of the complex field.
We note that in experiments involving diffraction of a
terahertz pulse by a slit a similar transformation from
a symmetric to an antisymmetric temporal profile was
observed.2,3

We obtain the approximate amplitude spectra by tak-
ing the Fourier (time) transform of Eq. (3), neglecting
the f irst term in its numerator. From the real part we
obtain
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where w2 ­ w0
2f1 1 s2zyq2d2g, R ­ zf1 1 sq2y2zd2g, k ­

vyc, and w0
2 ­ lq2y2p. Each frequency component of

the pulse diffracts as a monochromatic Gaussian beam
with radius wszd, minimum radius (beam waist) w0,
radius of curvature Rszd, and Gouy phase shift fszd.
The parameter q2 thus plays the role of the confocal
parameter, which is twice the Rayleigh range. Note
that for this pulse all the frequency components are
characterized by the same value of q2 and hence will
all have the same Rayleigh range. From the definition
of the beam waist w0 it is clear that if q2 is f ixed
the longer wavelength components will have a larger
spot size at the focus. This frequency dependence
of the spot size is indeed observed in experiments
with focused terahertz beams.9 Figure 4 shows the
amplitude spectrum at the focus for different radial
positions. Note the red shift of the wavelength lp at
the peak of the spectrum as one moves off axis. The
bell-shaped spectra are also similar to those observed
in terahertz experiments.8,9 The amplitude spectrum
jẼr

y sr, vdj on axis is maximum at the frequency vp ­
2cyq1; hence q1 is related to the peak wavelength
of the pulse by q1 ­ lpyp. In the far f ield the
amplitude spectra, and hence the pulse width, become
independent of radial position.

We note that a recent paper by You and Bucksbaum11

also discusses pulse reshaping and polarity reversal of
a unipolar pulse. There the authors use an approach
based on propagating the individual Fourier compo-
nents of a pulse that is Gaussian in space and time.
The exact solutions presented here12 are in agreement
with the results of Ref. 11.

In conclusion, we have examined the physical prop-
erties of a two-parameter exact solution of Maxwell’s
equations that is capable of describing focused single-
cycle electromagnetic pulses. The solution clearly
shows the role of the Gouy phase shift in the temporal
reshaping and polarity reversals of terahertz pulses.
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