CHAPTER III

OPTICAL BISTABILITY IN PERIODIC STRUCTURES

A. Introduction

Periodic structures play a rather fundamental role in
optics. The diffraction grating of classical optics util-
izes the wavelength selective reflection and transmission
properties of periodic structures to perform spectral analy-
sis. In.the modern field of integrated optics periodic thin
film dielectric waveguides are used as filters, input and
output couplers and as "mirrors" in distributed Bragg re-
flector (DBR) and distributed feedback (DFB) lasers [1].
Distributed feedback structures are compact, possess a high
degree of spectral selectivity and are compatible with the
Planar technology of integrated optics.

Recently, Okuda et al. [2] have considered the use of
Bragg reflectors as mirrors for a bistable optical device.
Although that device employs periodic structures, concep=-
tually it is not much different from the Fabry Perot type
since they both depend on a feedback mechanism localized at
the ends of a homogeneous nonlinear medium. Subsequently,
we proposed and presented an exact analysis of a new device
concept in which the feedback mechanism is distributed

throughout and integrated within the nonlinear medium as a
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periodic perturbation of the refractive index [3]. On the
theoretical side, the discovery of closed form solutions for
this problem of nonlinear interactions in a periodic struc-
ture is a significant advance. (The closely related problem
of gain saturation in DFB lasers has resisted attempts at
exact solution for a decade [4].) In this chapter we pre-
sent a more detailed description of the distributed feed-
back bistable optical device. We consider the effects of a
saturable nonlinear index, of loss, chirp and taper, and
conclude with design considerations for a practical device

that may be built using the concepts discussed here.

B. Simple Model of Bistability in a DFB Structure

Before we begin the analysis we review some of the
properties of a linear grating and present a simple physical
pPicture of bistability in a nonlinear DFB structure.

The grating structures under consideration are shown
in Figs. (3.la) and (3.1b). They may be waveguides with a
periodic corrugation of their boundaries or bulk media with
a periodic perturbation in the dielectric constant. A light
wave will interact strongly with these structures if the
period of the perturbations is an integer multiple of half
the light wavelength in the medium. Under this condition
(known as the Bragg condition), there is coherent backscat-
tering of a forward-going wave, and the grating acts as a

band-rejection filter whose fractional bandwidth in wave-
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Fig.

Fig.

(3.1a):

Waveguide with a periodic surface

corrugation.

le—qvﬁ%-AJ

(3.1b}):

Thin film with a periodic perturbation

of the dielectric constant.
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length A can be shown to be [5]
Ax/X = A/L, (3.1)

where ) is the period of the perturbations and L is the
length of the structure. The center of this band is at the

Bragg wavelength

AO = 2n4, (3.2)

where n is the refractive index of the bulk medium, or the
effective index of the waveguide.

The coupled-wave theory of Kogelnik [5] assumes that
only two counterpropagating waves of complex amplitude EF
and EB exist within the structure. These waves exchange
eénergy as a result of scattering by the index perturbations.
The strength of this interaction is measured by a coupling

constant k which is related to the amplitude of the pertur-

bations. The two waves satisfy the coupled-wave equations
. s

EF = 1KEBexp( i2ARz) (3. 3a)
Vo s .

EB = 1KEFexp(12A82), (3.3b)

where primes denote d/dz, and the detuning of the incident

light wavelength from the Bragg wavelength is measured by
AB = B - 80 ' (3.4)
with 8 = 2wn/)X and Bo = 2ﬂn/k0. We remark that for a
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corrugated waveguide EF and EB represent mode amplitudes in
the unperturbed guide. It can be shown [6] that both sur-
face corrugations and bulk index perturbations lead to the
same coupled wave equations with the appropriate expressions

for the coupling constant x. The solutions of Egs. (3.3)

with boundary conditions EF(O) = 1 and EB(L) = 0 are
- lkexp(-iABz) sinh[D(z-L)]

Fp(2) = 3ESInR (PL) ¥ iD cosh (DL (3.5a)
and

E_(z) = exp(iABz%{Agginh[D(z—L)] + iDcosh [D(z-L)]}

F -ABsinh(DL) + iDcosh(DL) (3.5b)

where

D= 1«2 - (ap) 21172, (3.6)

Under phase-matched conditions (AB = 0), the power in

the forward and backward waves is given by

1B (2) |2 = sinh® [ (z-1) ] (3.72)
coshz(KL)
|2 (2) | % = cosh® [« (z-1)] (3.7b)
» costhL ) ’

The reflectivity as a function of detuning is found from

Egs. (3.5) to be

(KL)2
(ABL)2 + (DL)2coth2 (DL)

- 2 2 _
R = |E5(0)|%/|EL(0)|° = . (3.8)
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For zero detuning this reduces to

R = tanh®(vL) . (3.9)

To complete this review of the properties of the
linear grating, we plot the main results (Egs. (3.5)=(3.9))
in Figs. (3.2)-(3.5). 1In Fig. (3.2) we show the power in
the forward and backward waves as a function of the normal-
ized distance z/L within the grating when A8 = 0. It can
be seen that for large coupling cénstants (L. > 2) the field
in the structure drops off rapidly within the first few
grating periods. Most of the incident light is reflected.
Fig. (3.3) shows the reflectivity and transmissivity of the
grating as a function of the detuning ABL for different
values of kL. The width of the central lobe increases with
increasing kL and lérger sidelobes begin to appear. Final-
ly, Fig. (3.4) shows the reflectivity as a function of kL
for zero detuning. Note the rapid increase in R as the
coupling constant is increased.

To understand bistability in periodic structures, sup-
pose now that the DFB structure has an intensity-dependent
refractive index. Suppose also that the incideant light
frequency satisfies the Bragg condition for the structure so
that at low input intensity most of the light is reflected.
As the intensity is increased, more light enters the struc-~
ture and the change in index due to this light detunes the

grating from the incident wavelength. This in turn allows
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Fig.

(3.2) :

Distribution of forward and backward fluxes
in a grating structure for zero detuning.

(a) xL =1, (b) xL = 2, (c) kL = 4.
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Fig.

(3.3):

Reflectivity (——) and transmissivity (---)
of a distributed feedback structure as a
function of detuning ABL for different values

of kL.

(a) kL =1 (b) kL = 2 (c) kL 4.
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more light to enter, until eventually the structure is so
detuned that the light wavelength in the nonlinear medium
no longer lies within the stopband. The device thus turns
on to a high transmission state. As the input intensity is
reduced there is still enough light within the structure to
keep its index high and maintain it in a high transmission
mode. Switch-down to a low transmission state occurs at a
lower input intensity than that at which switch-up occurred,
resulting in a hysteresis loop. This behavior is illustrat-
ed in Fig. (3.5a), which shows the transmission of a nonlin-
ear DFB as a function of input intensity. This curve was
generated from an exact solution of the nonlinear coupled-
wave equations which we derive in the next section. Also
shown in Fig. (3.5b) is the transmission of a linear DFB

as a fuhction of detuning. A comparison of Figs. (3.5a)

and (3.5b) shows clearly the role of the light intensity as

a detuning parameter in the nonlinear DFB structure.

C. The Nonlinear Coupled-Wave Equations

The starting point of the analysis is Maxwell's wave

equation for the transverse field E:

2.2, _ .2
c BZE = Bt(E+4nP) ’ (3.10)

where P is the polarization density. We assume that the
medium is lossless, the waves are monochromatic and of radi-

an frequency w, and that no higher harmonics of the incident
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Fig. (3.5): The role of input intensity as a detuning
parameter in a nonlinear DFB structure.
(a) Transmission of a nonlinear DFB as a
function of input intensity.
(b) For comparison, the transmission of a

linear DFB as a function of detuning.
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wave are generated. In the notation of Maker and Terhune

(7], the envelope of the polarization wave can be written

_ ) L (3) .o *

Pi e ij(w)Ej+3Aijkl(w' w,w,w)EjEkEl ’ (3.11)
where Xi?il is a component of the fourth rank third order
susceptibility tensor. (This well-known formalism for the
nonlinear polarization is reviewed in Appendix A.) The com-

bPlex field envelopes E and P are related to the real fields

by

E = ReBe ¢t P = Repe 10t (3.12)

For an isotropic medium and linearly polarized fields the

polarization density becomes

P = (n®-1e/an+3x(3) k)% (3.13)

where the periodically modulated refractive index is given by

n{(z) = n0~+n10032802 ’ (3.14)

with Dy << ng. Using Egs. (3.14), (3.13) and (3.12) in
(3.10) we obtain a form of Matthieu's equation with a non-

linear driving term:

nU)2
3ZE + ([_9_

2n0nlw2
= + —-§—~—COSZBOZ]E

C

2
= i2me, (3) g 25 | (3.15)

2
c
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We now define the wavenumber g = now/c = ZWnO/A where
A 1s the vacuum wavelength of the light. We also recall
the Bragg wavelength AO as the wavelength of light which
satisfies the Bragg condition g = BO for the structure.
Following Kogelnik and Shank [5] we introduce a coupling

constant

T
K = (3.16)

—~

o

which measures the strength of feedback per unit length
provided by the structure. The effect of the nonlinearity

is measured by a constant

T,
Yy = — (3.17)
o
where n, = 12WX(3)/n0- With these definitions, and assum-

ing that the Bragg condition is nearly satisfied so that

B/BO = 1, Egq. (3.15) becomes

22e + (g% + 48kcos28,2)E = ~yg|E| °E . (3.18)
In general, the periodic modulation of a medium will
give rise to an infinite number of diffraction orders.
However, in the vicinity of the Bragg frequency only two
orders are phase-matched with the structure and will grow to
a significant amplitude [5]. The field in the structure is

thus taken as a sum of two counterpropagating waves
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z iRz

E(z) = Ep(z)e™®% + E_(2)e” (3.19)

where the complex amplitudes are assumed to vary little
within an optical wavelength. (This assumption has been
rigorously established by Kogelnik for the periodic struc-
ture [5].) Using Egq. (3.19) in (3.18), invoking the slowly
varying envelope approximation (]dzE/d22]<<|BdE/dz]) and
comparing terms with equal exponentials we finally obtain

the coupled wave equations

. _ -12ARz 2 2
-i3_Ep = KEge + y(]EF] + 2]EB] )Ep (3.20a)
. _ 12ARBz 2 2
i3, By = kEge + y(]EB] + 2|EF] )Eq (3.20Db)
where AR = g - 80. In deriving the above equations we have

discarded rapidly-varying terms with exponentials exp i i3B8z.
These are the model equations that describe wave prop-
agation in a periodic structure with an intensity-dependent
refractive index. The physical interpretation of these
equations is that a wave (EF or EB) grows in amplitude along
the propagation direction as a result of coupling (through
K) to the other wave. Simultaneously it falls out of phase
synchronism with the structure as a result of the detuning
AB. The effect of the intensity-dependent terms is to cause
an additional change in the relative phase of the two waves
as they propagate. In the next section we shall obtain an

exact closed-form description of the transmission character-
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istics of the non-linear DFB structure.

D. Exact Solutions

The coupled-wave equations can be solved by methods

used by Armstrong et al. in their analysis of harmonic gen-

eration [8]. Writing E = |EF|exp(i¢F) and Eg = IEBIeXp(i¢B)
in Egs. (3.20) and equating real and imaginary parts we
obtain
EZIEFI = KIEB|51n8 (3.21a)
azlEB| = KlEFlsine (3.21b)
2 2
3,6 =2AB+3y(|Eﬂ +|EB| )+K(|EB|/|EF|+|EF|/|EB|)cose (3.21c)

where 6 = 2A8z + ¢F - ¢B.

From Egs. (3.2la) and (3.21b), we obtain

ENERENENENEN

which leads to a conservation law for power flow:

T| , a constant. (3.22)

Using (3.21la) and (3.21b), Eg. (3.21lc) can be written in

the form

2 2
—(cote)az(ln|EFEB|cose)=2AB+3y(|EF|+|EB| ) (3.23)

which can be integrated to yield another constant
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=5 - 2 2 4
r—|EF1|EB|cose+(2Ae 3y|ET| ) | Ep| /2643 |E|%/2x%. (3.24)

Equations (3.24) and (3.22) are now used to eliminate sin®

and |EB| from (3.2a) resulting in a single differential

[Bplo,1EL] = « (B 2 (|51 - |By1?)2

2l T

]2 241/2 (3.25)

- 1= 1By | 2 (3| By | 2~206+3v| Eg | 2) /2x]

2

At the exit of the structure z = L, the backward flux | Egl

le is the transmitted flux.

must vanish, hence IEF(L)]2 =|E
This boundary condition is used to evaluate the constant T
as

2
. AB]ET]
= — (3.26)

Finally we normalize all intensities by a critical intensity

2 _

]Ec] = 2),/3mn,L (3.27)
and find that the forward flux y = ]EF]2/]Ec]2 is given by
. 2 2 2, _

(l/ZBCy) = (y=J) [(xL)"y-(y-J) (ABL+y) "] = 0 (3.28)
2 2
where ¢ = z/L and J = |E,|"/|E_|".

Equation (3.28) can be recognized as the energy of a
unit-mass particle moving in the quartic potential (Fig.
(3.6))

2

V(y) = (J-y){(xL)%y - (y-J) [ABL+y]°}. (3.29)
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The roots yi(i=l to 4) of V(y) correspond to the classical
turning points of the particle and are, in general, func-
tions of the transmitted intensity J. Since y is positive,
the motion is confined to the region between Yq and Yy, = J.
The other roots Y3 and Y4 bound physically inaccessible re-
gions and can be complex. (We remark that there is no ap-
parent connection between the onset of bistability and the
shape of the potential V(y).)

The solution of Eq. (3.28) can be written

vy (Z)
———‘-31—1—77 =2z , (3.30)
[(-V(y)]
I
where I is the incident flux normalized to IECIZ. Since at
the exit of the structure y(l) = J, the transmitted inten-

sity is given implicitly by

J
dy = 2. (3.31)
/I (-v(y) 1172

For further analysis, it is convenient to rewrite Eqg. (3.30)
soO that one of the limits of the integral is a root of the
guartic V(y). Here the appropriate root is Y2=J, thus

(3.30) becomes
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J
dy
= 2(1-2). (3.32)
o
]( [-v(y))1/?

y(z)

Equations (3.31) and (3.32) are elliptic integrals of
the first kind which can be inverted using standard tech-
niques [9]. Details of the calculation are given in Appen-
dix B. Here we present only the final results. From Eg.
(3.31) the relation between incident (I) and transmitted (J)
intensities is

Y3 (J) - Y2 (J)

I= J) + = .
Y309 e e | (3.33)
v, (D=7, " (ujm) -1
where the y; are roots of V(y). The function sn(ulm) is a
Jacobian elliptic function with argument
= - - 172

and modulus

L yyy) gy G 35)
(yl-y3) (y?_-y4) : :

For zero detuning (AB=0), it is easy to solve for the

roots of V(y). These are y2=J, y3=0, and

2 1/2
- - Jd J 2
Y, Y, S 5+ [[5] + (kL) ] (3.36)
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ey =2 |
Yy =¥ 73 7

Egq. (3.33) then reduces to

2 5 1/2
+ (kL) . (3.37)

I =

NG

1 +{Z:}sn
Y+

[‘Y+H§—j2} . (3.38)

The spatial distribution of the forward flux y is found

from (3.32) to be

v(z) = J ~ ) (3.39)
Y_— 2 > - — 2
Y+an [(5 l)Y+'[§:} ]

To evaluate Egs. (3.33) and (3.38) we start with a

given value of the output J. For this value of J we find
the roots Yi(J) of the gquartic V(y). These roots are then
used in the method of Arithmetic-Geometric Mean [10] to
compute the elliptic functions. The input intensity I is
then found from Eq. (3.33), which for the case of zero-
detuning reduces to (3.38).

Figs. (3.7) show plots of Eq. (3.38) obtained by the
strategy outlined above. The different curves are for dif—
ferent values of the coupling constant kL. In Fig. (3.7a),
kL = 1, and the effect of feedback is negligible. 1In Fig.
(3.7b) kL = 1.4, and for this increased value of coupling
constant the input-output curve shows a region of large

differential gain. Where the curve has a steep positive
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Fig.

(3.7) :

Transmitted (J) vs. incident (I) intensity of
nonlinear distributed-feedback structure for

different values of coupling constant kL.

(a) kL 1, (b) kL = 1.4, (c) «xL = 2,
(d) kL = 4. (e) Transmission of a nonlinear
Fabry-Perot with reflectivity R = 0.5 shown

for comparison.
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slope, small changes in input intensity are converted to
large changes in the output. In Fig. (3.7c¢) «L has been in-
creased to «L = 2. We see that I is now a multiple-valued
function J. As the input intensity is varied the output
initially changes little until a critical input intensity IC
is reached. At that point the output jumps discontinuously
to a higher value. When the input is now reduced the out-
put will drop down at a different critical intensity, re-
sulting in a hysteresis loop. 1In Fig. (3.7d) «L = 4, and
higher order bistable regions begin to appear. This is be-
cause the DFB transmission function begins to have strong
pPeriodic sidelobes. As the input intensity tunes through
these resonances by changing the refractive index, the out-
put jumps discontinuously as each sidelobe is crossed. For
sufficiently large kL, the nonlinear DFB transmission ab—
proaches that of the Fabry-Perot which is shown for compari-
son in Fig. (3.7e). The behaviour of the reflected signal
is shown in Figs. (3.8). Fig. (3.9) shows the effect of
the detuning ABL on the switching characteristics of the
DFB-BOD. These curves obtained from Eg. (3.33) show that
for a given kL, the switching threshold can be reduced by
operating on the high frequency side of the‘Bragg resonance.
However, the reduction in threshold is accompanied by a de-
crease in hysteresis width. This is shown in Fig. (3.10)
where we summarize the dependence of the width of the hys-

teresis zone on detuning and coupling constant.
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Fig. (3.8): Reflected intensity vs. incident intensity

for nonlinear DFB structure with kL = 2.

1l

(a) xL 2, and (b) kL = 4. The detuning

is ARL = 0.
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Fig. (3.10): Dependence of width of the hysteresis zone on
detuning and coupling constant. The switch-
on intensity is given approximately by

Is = L - ABL.
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The bistability discussed here is a manifestation of
the fact that for the same input intensity there are three
possible spatial intensity distributions that satisfy equa-
tions (3.20) and the associated boundary conditions. By
analogy with the nonlinear Fabry-Perot, we conjecture that
one of these spatial distributions is unstable and is thus
physically inaccessible in steady state. Fig. (3.11) shows
the spatial intensity distributions that correspond to the
same input intensity. The distributions A and C correspond
to the stable regions of the transmission curve while B is

unstable in steady state.

E. Approximate Results

The exact solutions presented in the previous section
provide a complete steady state description of the behavior
of a lossless nonlinear DFB structure. However, because of
the complexity of the elliptic functions involved, it is
difficult to obtain from these solutions useful analytic
expressions for key quantities such as the critical switch-
ing intensity in terms of device parameters. In this sec-
tion we present some simple approximate formulas which
yield a great deal of physical insight into the operation
of a DFB-BOD. These results are valid in the limit of high
coupling constant (kL > 2) and small detuning (ABL < kL).

To obtain the approximate results, we study the exact

solutions as represented in Fig. (3.10). We find that for
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a given coupling constant «L, the switching intensity de-
creases linearly with increasing detuning, ARL. Also, for
a fixed detuning the switching intensity increases linearly
with coupling constant. We can express these trends guanti-

tatively by writing

IS = gL - ABL (3.40)

where IS is the normalized switching intensity. For kL > 3
the intensity predicted by this formula is indistinguishable
from that obtained numerically from the exact solution.
Recalling that the dimensionless intensities are normalized

by

|12 = 22 (3.41)

we find the switching intensity in esu is

= eI . (3.42)
2

IESIZ 2x (kL - ARL)

An interesting feature of this relation is that the switch-
ing intensity is independent of the length of the periodic
Structure (for kL > 2). This is in marked contrast to the
behavior of a nonlinear Fabry-Perot where an increase in

the length of the medium leads to a decrease in the required
switching intensity. The difference is due to the fact that

in a periodic structure with large coupling (kL > 2), the

internal field drops off almost exponentially along the z-
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direction. Thus most of the light is reflected in the first
few periods of the structure and is unable to take advantage
of the increased length of non-linear medium. In a lossless
Fabry-Perot on the other hand the field is uniform through-
out the medium and the nonlinear interaction occurs along
the whole length of the cavity.

We now restrict attention to the case of zero detuning

(ABL = 0) and write « = ﬂnl/K in Eqg. (3.42) so that

. (3.43)

From this expression we see that switch-on of the DFB-BOD
occurs when the field-induced change in refractive index
(An = %nzlEslz) balances out the built-in periodic perturba-
tion in index, n,.
The index change at the threshold for bistability is

thus
An_ = 1 (3.44)
c 371 - -
F. Practical Considerations

In this section we study the feasibility of an operat-
ing DFB-BOD that uses currently available materials and
technigques. We also point out effects neglected in the
theory but which have to be considered in a practical

device.
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1. Design Considerations

Ideally, the materials used for bistable devices
should be solid state and have high nonlinear indices, low
losses and be available with good optical quality. Current-
ly the two most promising materials for device applications
are the semiconductors GaAs and InSb. For the purposes of
making numerical estimates we will focus on InSb which has

(3) on the order of 10—2 esu

a third order susceptibility ¥
at 5°K, at a wavelength of 5.3u (the wavelength of the CO
laser) [11]. A waveguide structure may be made out of this
medium by epitaxial growth of a related alloy with closely
matching lattice constant, such as InAsSb. (Abrokwah has
discussed techniques for the liquid phase epitaxy of InSb
and InAsSb in his dissertation [12].) The refractive index
of 1InAsSb 1is on the order of 1% less than that of InSb

and can be varied by changing the composition of the alloy
system. We choose the thickness of the guiding layer to be
W= 2.6u. To create the surface corrugations, a mask is
first made by exposing a layer of photoresist to the inter-

ference pattern produced by two argon laser beams, for ex-

ample. The grating periodicity is given by
A=)%/2sin8

where A is the wavelength of the argon laser (A = 0.4579 )
and 8 is the interference angle. Taking into account the

high linear refractive index of In Sb (~3.75), the required
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grating periodicity for operation at 5.3y 1is on the order
of 0.7u, which is easy to create. The grating is then
transferred onto the surface of the waveguide by ion mill-
ing through the photoresist mask, or by chemical etching.
We will assume a groove depth of 0.3yu.

For a TE mode the coupling constant is given by [13]

n 2 - n 2
_7mh °f e
K= TR (3.45)

where h i1s the peak-to-peak perturbation height, W is the
thickness of the guiding layer, ne is the film index and ng
is the effective index of the unperturbed mode. For refer-

ence we list below the parameters of our corrugated wave-

guide:

h = 0.3u
W = 2.6u
ne(InSb) = 3.75
ns(lnAsSb) = 3.56
n, = 3.6
n, = 10_l esu .

The effective index n, has a value between ng and ne and can
be determined from waveguide measurements [13]. Using this
data we obtain a coupling constant of k = lOOcm—l. For a

grating of length 5mm we therefore have
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Ignoring losses for the moment we find a switching intensity

= = 0.112 esu

which is equivalent to lOOW/cmz. This implies that if we

focus the input beam down to a spot size of diameter 10u we
only require a switching power of 80uW.
The loss due to absorption in InSb is a maximum of

lcm_l at the operating wavelength of 5.3p. Suppose scatter-

ing losses increase the total loss to 2cm_l. Then aL = 0.2,
which does not change the bistable transfer curve by much.

As we will see in the next section a loss of 0.2 only in-

Ccreases the switching threshold by about 10%.

2. Effect of Nonlinear Wavequiding

In the proposed waveguide geometry for the distributed
feedback BOD, the guiding layer consists of a medium whose
refractive index is intensity-dependent. The mode proper-
ties of this waveguide will therefore change as one varies
the intensity of the incident wave. It is therefore neces-
sary to consider how this nonlinear waveguiding will affect
the properties of the DFB-BOD.

The analysis of this chapter has assumed for simplici-
ty a single-mode propagating in the guide. We can make the
reasonable assumption that if the refractive index of the
guiding film does not change sufficiently (under the action
of the beam intensity) to bring in other guided modes, the
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properties of the waveguide will not change much. To quan-
tify this, consider the approximate formula for the number

of guided modes in the waveguide [6]

2w

N=>\

2,1/2
R (3.46)

(n2 - n
f
where ne is the refractive index of the guiding film, ng is
that of the substrate W is the film thickness, and ) is the
free space wavelength of the incident light. To account for

the intensity-dependent film index we write

where An = %nZ[E[Z. We will find the size of An required to
change the number of guided modes from N = 1 to N = 2 and
compare that to the field induced An at the threshold for
bistability.

Setting W = A/2 we find from Eg. (3.46) that

An 0.75

£o

is the index change required to introduce another guided
mode. In the previous section we showed that the index

change at threshold is given by

_ KA
Anc = 30
For our InSb device with «xL = 5 and nf = 3.6 at A = 5,3y,
0
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we find

An_ ~ .003
c

which is more than 2 orders of magnitude less than the
An = 0.1 required to change the mode properties of the
guide. Thus the effect of nonlinear waveguiding can be

neglected in practical DFB-BODs.

3. Effects of Loss, Chirp and Taper

So far we have assumed that there are no losses within
the DFB structure and that the grating has perfect periodic-
ity. 1In practice waveguides with corrugated surfaces are
notoriously lossy and often have a z-dependent period and
amplitude introduced inadvertently in the fabrication proc-
ess [13]. These variations, konwn as chirp and taper re-
spectively, may also be created by design in order to pro-
duce a filter with a certain desired response [l4]. 1In this
section we show that the theory of the nonlinear DFB can be
generalized in a straightforward manner to include these
effects.

A slow variation in the amplitude and phase of the
sinusoidal grating can be incorporated by defining a z-

dependent complex coupling constant

K(z) = k(z)et®(2)

kK (z) is then the taper function and ¢ (z) is the chirp.
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With loss, chirp and taper, the coupled-wave equations now

become
,Bp = ix(2)Ege 2082 0Dy (512 gy 2)E

- %OLEF (3.47a)
5,Ep = ~ix(z)Ep(2)et (2082 T 0200y (g 12 4 gy |2

+ %OLEB (3.47Db)

where o 1is the absorption coefficient. Exact closed form

solutions to these equations have not been found. We have
therefore used a fourth-order Runge-Kutta scheme to solve

them numerically for different values of loss and various

chirp and taper functions. Some representative solutions

are presented here.

Fig. (3.12) shows the effect of loss on a DFB BOD
with coupling constant kL = 2 and zero-detuning. We see, as
expected, that the presence of loss increases the required
switching intensity, narrows the width of the hysteresis
loop and decreases the jump between the low and high output
states. When loss is sufficiently high, it will of course
destroy the bistability features as shown in Fig. (3.12).

Sample calculations of the effects of chirp and taper
are shown in Figs. (3.13) and (3.14). The taper function is

taken as

= Z
K = Ko(l + TL)
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Fig. (3.12): Effect of loss on a DFB bistable optical

device. Here kL = 2 and ABL = 0.

67



v w
* *
" o
I

n
(=]
|

<A-NZM4Z~ ~CU-HcCOo
- -
* *
(=] n
| |

o
]
]

-

i I l
0 1 e 3
INPUT INTENSITY

(=)
(=)

Fig. (3.13): Effect of a frequency chirp on a DFB bistable
optical device. The chirp acts -as an extra

detuning added on to ABL.

68



] ¥ w
o 0 o
| I

CHAHWZMAZ+ —HCU-HCO
-
n
|

1.0
0.5
0 1 4

INPUT INTENSITY

Fig. (3.14): Effect of a linear taper on a DFB bistable

optical device with kL = 2 and ABL = 0.



and the chirp is described by

[zS]

o(z) = F

t“Nl N

where T and F are constants.

4. Effect of a Saturable Nonlinear Index

In our analyses we have only considered the lowest
order term in the nonlinear polarization that leads to an
intensity-dependent refractive index. This term, cubic in
the electric fields, is the dominant one in media with a
center of inversion symmetry. At sufficiently high inten-
sities, however, higher-order terms become important and
these generally tend to reduce the size of the nonlinear

index. Thus when one writes the refractive index as

the nonlinear index n, is no longer constant but is a de-
creasing function of the intensity I. This effect, known

as saturation, has important observable consequences for

the operation of bistable optical devices. For example, in
a recent experiment using the semiconductor GaAs [l15], sat-
uration of the nonlinear index made it impossible to observe
bistability beyond the first Fabry-Perot order. More re-
cently, under different experimental conditions, Miller et

al. [11] have observed fifth-order bistability in InSb. Here
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too saturation manifested itself in that each successive
Fabry-Perot order required a successively greater incremen-
tal change in input intensity.

When saturation is included, the nonlinear DFB equa-
tions can no longer be integrated analytically. Their nu-
merical integration however is straightforward and the re-
sults are presented here.

In our simulations we consider a saturable index of

the form

50

N, = 1% /T,

where IS is the saturation intensity. The presence of
saturation increases the switching intensity and may even
eliminate bistability completely (Fig. (3.15)). From sev-
eral computer runs, a rule of thumb emerges: that in order
to observe bistability the normalized saturation intensity
should be at least three times the coupling constant kL,

i.e.,

I 2> 3klL.
s

G. Conclusions

We have shown that a distributed feedback structure
with an intensity-dependent refractive index displays hys-
teresis and bistability. Such structures provide a useful

alternative to the Fabry-Perot device especially in planar
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integrated-optics configurations.

The analysis presented in this chaper assumed that
there are no Fresnel reflections at the ends of the DFB
structure and that the backward wave grows from zero ampli-
tude at the exit. For high index materials like InSb this
assumption is clearly quite questionable since the Fresnel
reflection in this case exceeds 30%. While end reflections
may be reduced by applying antireflection coatings or slant-
ing the ends at Brewster's angle, they can never be elimi-
nated entirely and their effect should be considered in any
real situation. Since the extra Fabry~Perot effect due to
end reflections will tend to increase the cavity fields they
may result in a net decrease in the required switching in-
tensities. A quantitative analysis of this effect remains

to be done.
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